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EFFECTS OF MISTUNING AND MATRIX STRUCTURE

ON THE TOPOLOGY OF FREQUENCY RESPONSE CURVES*

ABSTRACT

The stability of a frequency response curve under mild perturbations of the system's matrix is

investigated. Using recent developments in the theory of singularities of differentiable maps, it is

shown that the stability of a response curve depends on the structure of the system's matrix. In

particular, the frequency response curves of a cyclic system are shown to be unstable.

Consequently, slight parameter variations engendered by mistuning will induce a significant

difference in the topology of the forced response curves, if the mistuning transformation crosses

the bifurcation set.

1. INTRODUCTION

This investigation is motivated by the need to prevent excessive vibration of blades in jet

propulsion systems. Blades are critical components in the machinery for generating

motive power for aeronautical and space propulsion. The number of blades in an engine

is very large, but the unexpected failure of even one of them is unacceptable. Usually,

the blades are arranged on a set of circular wheels, and each wheel is known in the litera-

ture as a 'bladed disk assembly'.

Bladed disk assemblies are often modeled either as a rectilinear array (cascade) of

blades, or as a cyclic configuration of blades on an axi-symmetric, circular disk. When

the global equations of motion are assembled, the structure of the system matrix is usu-

ally banded, for the rectlinear cascade, and circulant (in at least one sub-matrix) for the

circular configuration. What we seek to investigate here is whether the structure of a sys-

tem matrix has any effect on the variation of the forced response amplitudes from one

blade to another as small amounts of random mistuning are applied to the system. In

other words, will there be a significant difference in results if the same mistuning is

applied to two 'similar' systems, one of which has a banded matrix while the other is cir-

culant?

In the structural dynamics literature (see, for instance, Bendiksen (1987), Wei & Pierre

1988) the linear and cyclic chains are sometimes assumed to undergo the same

*Work funded under Space Act Agreement C99066G.
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qualitative behavior under slight parameter perturbations. Thus, small order perturbations

of the tuned system matrix are assumed to lead to no more than small order differences in

the system dynamic characteristics relative to the unperturbed case, provided only that

the system has "strong coupling".

In this monograph, we show that such an assumption regarding qualitative behavior does

not actually hold in the case of cyclic systems; that cyclic systems exhibit a sensitive

dependence on parameter perturbation. Thus, a given state of mistuning may produce lit-

tle or no difference relative to the tuned case, while a considerable difference is induced

when a very small change is made in the mistuning. Such unstable behavior arises in

cyclic systems, even when there is "strong coupling". We state at the onset that

significant differences exist between the 'sensitive dependence on parameters' of linear

systems, with which we are concerned here, and the 'sensitive dependence on initial con-

ditions' of non-linear systems. The unstable--and apparently erratic--behavior induced

by cyclicity arises whenever the perfect ordering in a cyclo-symmetric, linear system is

destroyed, for which we shall use the term disordered motion. This is in consonance with

Ziman (1979). On the other hand, what is generally referred to as chaotic motion occurs

in non-linear systems which exhibit sensitive dependence on initial conditions.

In carrying out this work, we borrow from certain developments in the theory of topolog-

ical spaces; specifically, from the work of Arnol'd and his co-workers (1968 et seq. ) in

the theory of singularities of differentiable maps.

2. REVIEWS AND MISCELLANEA

2.1 DEFINITION OF MISTUNING.

In turbomachinery dynamics, a turbine bladed disk assembly is said to be tuned when all

the blades on the disk are assumed to be truly identical. Practical realities of manufactur-

ing processes preclude the existence of exact uniformity among all the blades. When

residual differences which exist from one blade to another (no matter how small) are

accounted for in the theoretical model, the assembly is termed a mistuned bladed disk.

The term 'mistuning' has variously been defined, often implicitly, to mean different

things by different authors. In order to avoid any ambiguity, we give an explicit

definition. Throughout this work, whenever we use "mistuning" without any qualifier, it

should be understood that we mean a violation of periodicity in a previously periodic sys-

tem.
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A system is said to be periodic in x, with a period z, if a characteristic system parameter

v (x) has the same value when the origin of x is translated by an integer multiple of "t, i.e.

v (x) = v (x + nx), n = 1, • • •, oo. In bladed disk assemblies, it is convenient to choose x as

the angular displacement from a datum point at the disk rim, and express it as the blade

slot number; while v (x) is a measure of mistuning, such as the blade cantilever frequency

in a given mode of vibration (IF for the first flexural, 2E for the second edgewise, etc).

In bladed disk vibration, one occasionally comes across terms like "mistuned assemblies

with cyclic symmetry", even in reference to a randomly mistuned system. However, it is

obvious that once a bladed disk is mistuned, the cyclic symmetry of the tuned state is des-

troyed. Therefore, in order to avoid any uncertainty here, we emphasize that a mistuned

system cannot, by definition, have any cyclic symmetry.

The most common form of mistuning in practice is random mistuning, which arbitrarily

destroys periodicity. However, several previous investigators have used mistuning as a

generalized term to include cases where some form of periodicity is still preserved by the

"mistuned" system. We refer in particular to the case of 'alternating mistuning' with an

even number of blades on the wheel. In order to avoid any confusion with regard to ter-

minology, we shall use the term "quasi-mistuning" in such cases. In the types of alternat-

ing mistuning commonly used in bladed disk modeling, it is true that the initial tuned

state is destroyed, so that it is valid to use the term mistuning. However, cyclicity--albeit

of a different period--is still preserved by the 'mistuning'.

Although this work has its origin in bladed disk dynamics, the results obtained from here

need not be limited to bladed disks. Since we approach the problem from a generalized

viewpoint, the conclusions to be drawn will be of relevance to other structures composed

of identical substructures which are replicated either in a uni-axial chain, or in a closed

cyclic formation. Therefore, in the sequel, we shall borrow the 'tuned' and 'mistuned'

terminology from the bladed disk literature, and apply it to repetitive systems having

cyclic or rectilinear periodicity.

2.2 MATHEMATICAL PRELIMINARIES

In general (but not in every case), lower case roman italics x denote vectors; elements of

x are identified with subscripts, xi; upper case roman italics A denote matrices; their ele-

ments being subscripted lower case italics aq; while lower case greek letters a denote

scalars.
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We use _ n R 1 for the real line, 1_2 for the euclidean plane, and R n for the generalized

n-dimensional space of n-tuples of real numbers. Similarly, C '_ denotes the space of n-

tuples of complex numbers. In the complex field, the superscript T denotes a matrix tran-

sposition, as in B = At; while H denotes a complex conjugate transpose (Hermitian tran-

spose) as in B = A it if B, A _ Cnxn; while an over bar denotes conjugation, as in ,4.

The terms "function", "transformation", "operator", and "map" will be used synoni-

mously here, although there are strict differences among the terms; the same for "curve",

"surface", and "manifold".

Let A(°) represent the system matrix of a tuned system, while A (0 is the matrix of the

corresponding mistuned system, which is obtained from A(°) via a suitable transformation,

f: A (°__ A (0. Generally, we assume that mistuning engenders a perturbation leading to

the loss of periodicity, and that the perturbations are small, so that the tuned and mis-

tuned system matrices are "close". We express this closeness in a clear and precise

manner by taking norms.

Ilxll v is defined to be apth vector norm of x, where x belongs to a space of n vectors,

(x e N _) such that

Ilxllp = i=1_ Ix/It'J l<_p<o,,. (1)

The 2-norm (p =2) is most often used for a vector because it corresponds to a measure of

the vector's length in a euclidean space; but the 1-norm (p=l) and **-norm (p=**) are

also widely used.

We can define the corresponding matrix norm of A, subordinate to IIx II as

IIA II = sup -Ily II (2)
x_0 Ilxll " y = A. x.

From the foregoing definitions of norms, the tuned and mistuned systems will be

regarded as "close" if

lim IIA(0 II - IIA(°) II = 0 (3)
E_ 0 UA(°) II

where II. II is any suitable norm, e.g. as defined above. Similarly, the eigensolutions of

the rth mode of the tuned and mistuned systems will be regarded as almost identical if the

following three conditions are satisfied:
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lim [_f)__o)[ = 0
£---_ 0

(4)

lira l( IIu(f ) - u(,°) S )l= o
t_--q, 0

(5)

< , >
lim = 1. (6)
-o 0 IIu(re) I1"IIup ) II

In the foregoing, <-,.> denotes an inner product, _o) (respectively, _e) ) is the rth eigen-

value of the tuned (mistuned) system, and up ) (u(f) ) the corresponding eigenvectors.

A circulant matrix frequently arises in the study of circular systems. An nxn matrix is

said to be circulant when each row is a circular shift (to the right) of the preceding row.

Thus, there are only n distinct elements in a matrix of nxn, so that a circulant is com-

pletely determined by the elements in any one row. A 3x3 right circulant is of the form:

lab c]
A = circ (a, b, c) = c a b (7)

b c a

The above shifting is sometimes known as 'a right circulant'. Left circular shifts give rise

to left circulants.

Circulant matrices have very interesting properties that set them apart from matrices of

other forms (Davies, 1979). Notable among them is the fact that all circulants commute

under multiplication, i.e BA = AB, if A and B are circulant matrices, conformable under

matrix multiplication. Other properties of circulants that are more relevant for our appli-

cation here are itemized below, where A e _2nxn denotes a circulant matrix.

• Every A is diagonalizable by the Fourier matrix, F; i.e. A = FHAF where A is a diag-

onal matrix.

• IrA is circulant, then so are A r A _, A -_ and etA (a c C, ot _ 0).

• IfA is symmetric, then it has a series of degenerate eigenvalues.

• If A is anti-symmetric, its degenerate eigenvalues (if any) occur in complex conju-

gate pairs.

F is a Fourier matrix if its elements f_s are given by

1 e (2r,')(r_l)(s_l)/n (8)
-

where i is the unit imaginary number, and e is the natural logarithm base.
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A matrix is said to be banded if all the elements in the matrix are zero, except within a

narrow band parallel to, and including, the leading diagonal, i.e. a 0 = O, li-jl >m, where

m is the semi-bandwidth ofA. A special form of banded matrices that is of interest here is

the tri-diagonal form aij = O, l i-j I > 1. In such a matrix, non-zero elements occur in only

three parallel diagonals including the leading diagonal.

A (°) and A(E) may be regarded as linear operators in a vector space. They may also be

regarded as manifolds in a generalized topological space. In the latter case, we can effect

a transformation from A (°) to A (e) via a map, f. Our aim is to determine if a given map

behaves consistently, in a qualitative manner, as different perturbations are imposed on a

given A(°) at random. We also want to determine whether certain forms of A(°) exhibit

unstable behavior in going from A (°) to A (e), via f.

Mathematically, this can be expressed as follows. Let f: A (°) ---)A(e) denote a linear map in

the open region D c IRn of an n-dimensional topological space in which A(°) and A(c) are

smooth manifolds. We also assume that any vector subspace N e lRk c IR" is a smooth

manifold in an n dimensional space. It is understood that we are dealing with linear maps

and linear systems. A linear map is a transformation

f: Rm __.)_n

such that the following conditions hold:

f(xi + xz) =f(xl) +f(xz);

(9)

(10)

f(ax) =af(x); xie P,", ae P,. (11)

Generally, if the derivative of a map continues up to order k, then we say that f is of

class C k. If f is infinitely differentiable, then it is said to be a smooth map. Thus, a

smooth map is of class C**.

If, in addition to being a smooth map, f also has an inverse g such that g is also smooth,

then f is a diffeomorphism. The geometric effect of a diffeomorphism is to smoothly

bend the coordinates associated with A(e) compared to those associated with the tuned

system, A(°).

If, however, both the invertible map f and its inverse g are merely continuous but not

necessarily differentiable, then we say that f is a homeomorphism. A homeomorphism

is, in fact, a C O diffeomorphism.

The distinction between a homeomorphism and diffeomorphism is important because
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each leads to a different definition of the "equivalence" of two maps which shall be

required presently in our investigation of stability. In order to illustrate the distinction

between a diffeomorphism and a homeomorphism let us consider the behavior of the

map f:x _x 3 in R. It is seen by inspection that at x = 0, g =f-i is not differentiable

(thus, f is not a diffeomorphism), although it is continuous (and hence f is a homeomor-

phism).

2.3 MODELS OF BLADED DISKS.

It is not an easy matter to set up an accurate, workable model of a bladed disk at modest

cost. There are far too many effects to consider if one wanted to make up a "complete"

model that included all relevant parameters, so that such a model will be necessarily

expensive. It is therefore inevitable that several factors, which are judged to be of

insignificant influence, would be ignored in the theoretical modeling process.

Although one cannot always specify in advance the relative importance of the factors to

be included when setting up a model, two factors seem to occupy positions of eminence.

These are mistuning and cyclicity. It is surprising, but true, that even a small amount of

mistuning can induce considerable qualitative differences between a tuned and mistuned

assembly's behavior. Now, in a similar way, will there be a qualitative difference

between a model in which cyclicity is accounted for, and one in which it is excluded, on

a scale similar to that due to mistuning only?

In most aeroelastic models of bladed discs, it is often assumed that the blades are

arranged in a rectilinear cascade (e.g. Whitehead, 1966). Even when aeroelastic effects

are ignored, as in some studies of turbine blade packets, a rectilinear arrangement of

identical blades is often assumed (Prohl, 1958; Afolabi, 1978). The question now arises:

must cyclicity be retained in the analyses in order to obtain a qualitatively realistic

modeling? Until now, not much attention has been paid to examine whether the structure

of the system matrix has any effects on mistuning.

2.3.1 Rectilinear Models of Bladed Disks

Fig la shows a bladed disk modeled as a cascade of blades on a rigid disk having an

infinite radius of curvature. Each blade is treated as an aerofoil, Fig 1 b. The resulting

system equation is not circulant, since the first blade is not assumed to be coupled with

the last blade; hence, the system matrix is merely banded. Consequently, there would be

no repeated eigenvalues or 'double modes' in such a system. This is due to the fact that
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cyclic symmetry, which gives rise to modal degeneracy, is not accounted for. Therefore,

any computation carded out using such a model will be "structurally stable" (The con-

cept of structural stability arises from the theory of singularities, and is discussed below).

However, experiments have shown (Jay, MacBain & Burns, 1984; Srinivasan & Cutts,

1985; Mehmed & Kaza, 1986; Mehmed & Murthy, 1988), that double modes exist in

most bladed rotors (including prop fans). Moreover, instability of the response curves has

been frequently encountered in turbomachinery structural dynamics. This manifests in

the form of unequal amplitude distributions among the blades in a mistuned assembly,

Ewins (1976).

2.3.2 Cyclic Models of Bladed Disks

A commonly used model of bladed disks is shown in Fig 2a, which is a rendition of the

basic Dye-Henry (1969) model. The model retains cyclicity due to structural coupling of

the first and last blades. Moreover, it can also accommodate mistuning, since it is easy to

treat each blade uniquely in the simple model. Although it is very simple, it still captures

many important features of an actual bladed disk. Recent experiments conducted by

Datko and O'Hara (1987) have confirmed some of the qualitative features predicted (e.g.

by Afolabi 1982, 1985) using such a model. However, a major drawback still exists in the

model, and that is the inability to account for aerodynamic effects.

The model shown in Fig 2b is not an admissible model of a bladed-disk, unlike the Dye-

Henry model. This is because only the disk subsystem is accounted for, with no accounts

being taken of the blades. Although some investigators reported that it could be used to

model a bladed disk (for instance, Wei & Pierre, 1988), no experimental confirmations of

their predictions have been Published. However, because the model exhibits cyclicity,

and can also be rnistuned, it is a good model for studying the qualitative characteristics of

membranes, rings or disk only.

We now return to the importance of cyclicity in bladed disk modeling. We know from

previous work (Afolabi, 1988b) that when cyclicity is accounted for, different response

patterns are obtained, not only when different models are used by various authors (Ewins

&Han, 1984; Griffin & Hoosac, 1984), but also when the same model is used by the same

investigator (Afolabi, 1985). It is then relevant to speculate if the variations in such

results might have anything to do with the cyclic form of the bladed disk model used in

the analyses. In other words, if the analyses were repeated using a uni-axial model, rather

than one which is cyclic, will the inconsistency in results still remain?
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In order to provide answers to the foregoing, we shall study a simple system in which the

system's dynamical matrix has a banded formation, and compare it to the case when the

matrix form is circulant and verify the structural stability of the response curves of both

systems (see section 4).

2.4 ELASTIC STABILITY, GEOMETRIC STABILITY AND STRUCTURAL STABILITY.

A measure of the elastic stability in a system can be established from the quadratic form

of the system's energies. Let < x,y > denote an inner product, defined forx, y e C" asyHx;

T the kinetic energy of the system; U the potential energy; x a coordinate; while M and K

are symmetric matrices. Then

T=½<M_,.k >, U=½<Kx, x>, det[K-LM]=0, (12,13,14)

gives the characteristic polynomial of energies and, therefore, vanishes at values of

e C, for K e Cnx', which are the eigenvalues. In component notation, the rth eigenvalue

of the system may be written as

_, = 14 + iv, (15)

The system is said to have elastic stablility when/A< 0, for all r, i.e. each of the system

eigenvalues has a negative real part.

On the other hand, geometric stability can be investigated from the eigenvectors of the

system. We shall say that a system has geometric stability if the normalized eigenvectors

point more or less in the same direction when the parameters of the system are given

slight perturbations from their nominally tuned state (see eq. (9)). To the author's

knowledge, the term 'geometric stability' has not been previously used in the literature in

the context that we use it here.

Structural stability is a concept that has its roots in the theory of the singularity of

differentiable maps (Whittney, 1955; Thom, 1972; Poston & Stewart, 1978, Arnol'd et al,

1985). The idea will be used when investigating the stability of forced response curves

under perturbation. A curve or manifold is said to be "structurally stable" if a small per-

turbation does not change the topological character of its trajectories. In other words, the

shape of the manifold must be preserved for structural stability to be said to exist.

2.5 ILL-CONDITIONING DUE TO CYCLICITY

The governing equations of motion of a tuned bladed disk system can be set up using
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various methods such as the finite element method (Elchuri, 1981), the lumped parameter

method (Dye and Henry, 1969) or typical section models (Kaza & Kielb, 1982), Recep-

tance Methods (Ewins, 1973 and E1-Bayoumy and Srinivasan, 1975). Usually it is not

feasible to account for all the relevant parameters in a given study due to the usual con-

straints of cost, and the difficulty of setting up the analytical model, etc. A fairly

comprehensive model would result in a set of nxl complex vector equation of the form

MJi + (C + toRG)J¢ + (K + tolc2R + E)x + iHx =f (16)

where i is the unit imaginary number, for is the rotation speed, M is the mass matrix, C the

viscous damping matrix, G the coriolis matrix, K the elastic stiffness matrix, R the centri-

fugal stiffness matrix, E the complex aeroelastic matrix, and H the structural (hysteretic)

damping matrix. The vector x and its derivatives represent displacement, velocity and

acceleration, and f is the vector of other external forces.

Eq (16) is essentially a set of simultaneous equations, linear or non-linear. Assume we

can carry out an admissible linearization. When all of the preparatory work is done, one

would be left with a set of linear simultaneous equations of the form

(A -_/) x =f (17)

where I is the identity matrix. The set of equations shown in (17) above has been studied

extensively by several investigators, for instance Wilkinson (1965), and Nwokah (1978,

1984) among many others.

In the case when k = 0, eq. (17) reduces to the familiar form of simultaneous equations. It

is well-known from elementary linear algebra that Ax =f can sometimes be ill-

conditioned with respect to solving for x, given A and f. A well-known ill-conditioned

matrix is the hilbert matrix, defined as

He R nx" mhij = 1/(i +j-1) (18)

The ill-conditioning that arises when solving a set of simultaneous equations is manifest

when considerable differences are obtained in computing x, when only a small perturba-

tion is impressed on A, for any given vector of right hand sides, f.

Another type of ill-conditioning that is not as well-known occurs when qualititatively

different results are obtained in solving for the eigenvectors x given small perturbations

in A with null f. It must be understood that it is not the numerical procedure that is com-

putationally ill-conditioned. Rather, the ill-conditioning is inherent in the physics of the
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problem, and is not eliminated by using a better algorithm. This type of ill- conditioning

is inducible by cyclicity. Thus, the eigenproblem of a tuned cyclic system is ill-

conditioned with respect to solving for eigenvectors. It must be noted that ill-

conditioning is not a universally fixed characteristic of a given matrix. In other words, a

certain A may be perfectly well-conditioned with respect to solving for eigenvalues, but

acutely ill-conditioned with respect to solving for eigenvectors, etc; see Section 5 below.

If a system is subject to ill-conditioning with respect to the computation of eigenvectors,

then different eigenvectors would be obtained under small (but different) perturbations of

A, just as happens when different vectors x are obtained when A is ill-conditioned with

respect to the solution of simultaneous equations. Ill-conditioning with respect to the

computation of eigenvectors will be demonstrated briefly in section 5, and is treated in

more detail in another monograph (Afolabi, 1989b).

Now, the frequency response curve of a given structural system is intimately linked with

the system's eigenvectors. Indeed, by using modal analysis, the response curves xi(og) are

simply a summation of scalar multiples of the eigenvectors:

xi( _) = uH'[ A - o321]-1 "U'fm (19)

where A is the eigenvalue matrix, U is the eigenvector matrix, f,, is the excitation force

(for the mth engine order with an inter-blade phase angle of/3,. = 2rtm/N, fm= B,.e i#,,,).

A series expansion of eq (19) yields

iv uHor u_ (20)
x/(09) = •]_=0 X•-oJZa,-ib_

where r denotes the rth resonance, i = -_2-i-, u,. e I1_n is an eigenvector, )_• e C is an eigen-

value, and at, b_ e C are modal constants.

If the geometric configuration of the eigenvectors are subject to sharp re-orientation

under small perturbation, then it is to be expected that the resulting response curves will

exhibit some form of inconsistency in the sense that different response curves will be

obtained under different but similar perturbations. Such inconsistency is exactly what has

always been reported by various investigators in blade mistuning research (Ewins, 1973;

E1-Bayoumy & Srinivasan, 1975; Griffin and Sinha, 1985; Ewins &Han, 1985; Afolabi,

1988a), when cyclicity is admitted into the model. Thus, although all the blades in a

tuned assembly have identical response patterns, a small mistuning can lead to consider-
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able changes between the stress or displacement amplitude experienced by each blade, as

will be demonstrated shortly.

In some studies using tuned circulant matrices (Afolabi, 1982), the amplitude increase

arising from a small mistuning can be both substantial and localized (around only one or

two adjacent blades), leading to the premature failure of the affected blades. Those

blades, which experience unusually large stresses thereby falling unexpectedly, while all

other blades on the same disk are still stress-worthy, are known as "rouge blades",

Afolabi (1988a).

2.6 IMPORTANCE OF MATRIX STRUCTURE

We know that a symmetric circulant matrix, aij = aji, having a series of degenerate eigen-

values, lies on a bifurcation set (Gilmore, 1981). Bifurcations in linear systems, and the

importance of the bifurcation set (sometimes known as the catastrophe set) in mistuning

research is explained in section 3.4. If a circulant matrix is mistuned, a geometric insta-

bility of the degenerate modes will result if the mistuning leads to a crossing of the bifur-

cation set whether the system has so-called strong coupling or not. If however, no cross-

ing of the bifurcation set takes place, then the tuned system will exhibit strong geometric

stability when given small amounts of mistuning. In contrast, the tuned banded matrix

does not generally exhibit geometric instability until the eigenvalues are pathologically

close, Wilkinson (1965).

3. SINGULARITY THEORY AND THE STABILITY OF SMOOTH MAPS

3.1 INTRODUCTION

Since this monograph is written for an engineering audience, we present in this section a

brief summary of some basic concepts from the theory of the singularity of differentiable

maps, which would be necessary for explaining our results.

Singularity Theory is a relatively new and rapidly evolving branch of mathematics. Its

origin can be traced to the work of Whittney (1955). Substantial contributions were made

by the French mathematician, Ren6 Thom (1972), who undertook a classification of the

singularities of smooth maps. The British mathematician, Christopher Zeeman (1976,

1977), coined the colorful tag "Catastrophe Theory", and popularized Catastrophe

Theory beyond the circle of a few mathematicians. Tim Poston and Ian Stewart (1978),

wrote a very easy to read introduction to Catastrophe Theory. The Catastrophe Theory of
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Ren6 Thom has now been superseded by singularity theory due in large part to the

prolific Russian mathematician, Vladimir I. Arnol'd (1968 et seq) whose classification of

singularities has extended beyond those established by Thom.

Why do we want to use singularity theory in bladed disk research? The reason is that the

theory is very good at handling those situations where 'structural instability' occurs. This

is the case when a small change in a system's "control parameter" leads to sudden and

sharp changes in the behavior of the system under one situation, while the same degree of

change in the control parameter produces little or no change in the behavior of the same

system in another instance. Thus, singularity theory is concerned with qualitative proper-

ties, rather than quantitative. In a recent article, Zeeman (1987) defines qualitative pro-

perties as those that are invariant "under differentiable changes of coordinates, as

opposed to quantitative properties that are invariant only under linear changes of coordi-

nates".

Our basic approach will be to take a given function which typifies the behavior of a

structural system, and study how the shape of the function changes as we apply small

arbitrary perturbations to the system. If the topology of the curve remains basically the

same, then the function is said to be stable, in some sense to be specified. If, however,

small perturbations in the parameters of the function significantly changes its qualitative

character, then it is said to be unstable. This stability may be expressed in different forms:

topological stability, differential stability, etc. In essence, what we are interested in is a

qualitative measure of how different the mistuned function will be, compared with the

original tuned function. Singularity theory offers us a vehicle to do this in a very precise

manner.

We can now tie the foregoing concepts into our objective. We seek to examine whether a

circulant matrix exhibits any noteworthy qualitative characteristics under slight parame-

ter variation, which are not exhibited by matrices of other forms (e.g. tri-diagonal forma-

tion of the linear chain). In order to do this, we shall need to establish some equivalence

between various maps. Thus, if we examine a characteristic function (or, map) of the

tuned system, and compare it to that of the same system when exposed to an infinitesimal

perturbation, then we can compare whether the map 'before' and 'after' are 'close' or

not.

One could express the qualitative equivalence between various maps in different forms.

The equivalence that we seek between two maps will be based on the stricter require-
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merit of diffeomorphism, rather than homeomorphism. Thus, we seek differential

equivalence, rather than mere topological equivalence. When we do this, we then arrive

at the concept of C** equivalence, as recommended by Arnol'd.

Let dl and d 2 be diffeomorphisms, while f_ _o)and f2 (c) are linear maps. A C** equivalence

is said to exist between the map

and another map

fi(°) : A(°)(O) --_ A(O(O)

f2 (0 : A(°)(w) --->A(O( W)

if there exists diffeomorphisms

d! : A(°)(0) ---> A(°)(og),

such that the following identity holds:

d2 : A(O(0) --) A(e)(og)

(21)

(22)

(23, 24)

f2(e) _ d2(fl(O)(dl-1 )) (25)

The identity above can be cast in the form of a commutative diagram as sketched below:

At°;(0) /-1(o) A(c)(0 )
I-

dl d2

• A(C)(co)
A(°_(a_) fz(c)

The equivalence between the maps fl (°) and f2 (0 which transform the tuned frequency

response manifolds to the mistuncd case is a C'* equivalence if diffeomorphisms dl and

d2 can be found. Such a diffeomorphic equivalence is also known as differentiable

equivalence (Amol'd et al, 1985).

3.2 STABILITY OF MAPS

We now turn to the question of the stability of maps. Fundamental to this issue is the

behavior of the critical points of a smooth map. In the theory of singularity of smooth

maps, critical points are also known as singularities. If a map is merely a function of one
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variable x, we know from elementary calculus that the critical points of that function can

be obtained by finding those values of x for which f'(x) = O. There are basically two types

of singularities that are of interest to us. These are styled 'generic' or 'degenerate'.

It is easiest to consider the situation when the map f is merely a function of one variable

x. Let Diflu denote the ith partial derivative of f evaluated at x = u. With this notation,

the critical points of f are said to be degenerate when D Ifl _ -Dr] _, = 0, DEll _ _ O, for a

function of one variable). It has been shown that a critical point of a function of one vari-

able is structurally stable if and only if it is a non-degenerate critical point. Another

interpretation of this, which is more relevant for our purpose here, is that every degen-

erate critical point is structurally unstable (Poston and Stewart, 1978; italics added).

If a map f is a function of more than one parameter (xi, i =1, ... n), we can define the

Jacobian matrix of f in terms of the components off- q], f2, "" "fn)

Jf[, = Jij - 3x) " (26)

We can also define the Hessian matrix of f at u as:

Hfl = hij = b2f(x) (27)
_xibxj ' x =u.

One may then classify the stability of the critical points of f in terms of D lfl, and Hfl _.

The critical points of f are said to be generic if Df] ,, = 0 and det (Hf I ,) = 0. If all of the

critical points of f are non-degenerate, its qualitative behavior is completely character-

ized by the Morse Lemma. f is then said to be a Morse function. The requirement that

det (l-lf I_) = 0 is sometimes known as the Morse condition.

There is more than one version of the Morse Lemma. The version given here is stated

without proof. (For the interested reader, proofs may be found in Poston & Stewart

(1978), Arnol'd (1985), and Rabier (1985) among others. The following statement of

Morse Lemma is rephrased from Rabier (op. cit.):

Let f be a map of class C" (m_>2)on a neighborhood of the origin such that f(0) = 0,

Df]_(0) = 0, dethq(0)¢0. Then there exists a C"-1 local diffeomorphism d which

preserves the origin and transforms the local zero set of the quadratic form d -_ h0(0 ) _2

into the local zero set of f, such that Dd(0) = I, and d is of class Cm away from the

origin.
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Now, a Morse function is a very stable function in the qualitative sense. The shape of the

function does not change under a slight change in a parameter of the system. It is

described by Poston and Stewart (1978) as having a "preservation of type under pertur-

bation". If we choose a suitable function of our matrix A (°) (e.g. a frequency response

function under a given excitation, and proceed to investigate its stability, the necessary

and sufficient condition for that function to be structurally stable is that it be a Morse

function. If, on the other hand, it is not a Morse function, then those critical points of the

function that are degenerate will "unfold" under arbitrary perturbation. Several unfold-

ings are possible depending on the particular degeneracy, and the form of mistuning. The

ultimate aim is to obtain a versal unfolding of degenerate frequency response curves in a

given system, Arnol'd ( 1972).

We are now in a position to define the specific form of the stability of maps that is of

main interest to us here. A map f(0) is said to be diffeomorphically stable if every map

j_ (c) that is sufficiently close tof (°) is diffeomorphically equivalent tof _°).

The foregoing concepts may be illustrated by considering two functions, each of which is

a function of only one parameter. The illustrations we present here are adaptations of the

examples used by Arnol'd (1972) and Poston & Stewart (1978), who consider the

behavior under perturbation of the functions f: x --, x 2 and f : x ---) x 4 in their treatments

of singularity theory. Since our objective is to investigate the stability of forced response

functions, their original functions are suitably transformed so that they look like damped

vibration response curves. We therefore use the functions shown in eq. (28) and (29)

below, rather than the original x 2 and x 4.

Figs 3 a- c show the variation of the "tuned" and "mistuned" quadratic functions. The

mistuned function is obtained by adding a perturbation function to obtain a mistuned

function that is "close" to the original tuned function. If fl (°) = x n represents a tuned

smooth function, and f2 <c)a mistuned function that is "close" to fl (°), then the most gen-

eral perturbation can be written as

/1

f2 (e) =fl (°) + __,erx n-l, [e I,_1

with the system variable x and a perturbation parameters e_. Note that some of the e, may

be equal to zero. The sketch in Fig 3a depicts the 'tuned' function

fl (°) = 3_(X) = b2 - {(x-a2) 2 } (28)
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while

f2 (0 - f2(x, e) = b2- {(x-a2) 2 + g(x-a2)} (29)

is a slightly perturbed variation of the tuned function. Here, ai. b,. are constants. It is seen

in Fig 3b that for e<0, the critical point of rE is displaced somewhat, but the overall shape

of the function/_ is preserved. The same observation holds when e > 0, Fig 3c. Thus, the

sign of e has no effect on the shape of the manifold. A very different picture is obtained,

however, when we consider the function

fl (°)- f4(x) = b4 - {(x-a4) 4 }

and its suitably perturbed version

(30)

f2 (e) =f4(x, e) = b 4 - {(x-a4) 4 + E(x -a4) 2 } (31)

The function described by eq. (30) is graphed in Fig 4a, while Fig 4b shows the mistuned

function represented by eq. (31), with e<0.

It is seen that the degenerate critical points which were previously coincident at x =a4 are

now split into two local maxima and an intervening local minimum. On the other hand,

when e> 0, the curve shown in Fig 4c results. There is now a considerable qualitative

difference between the shapes of the three curves in Fig 4. This qualitative difference

between Figs 4b and 4c persists, no matter how small we make our perturbation parame-

ter, lel, provided that lel s0. Thus, the critical points of the tuned system are not con-

sistently preserved under arbitrarily small perturbation. It must be noted that the shape of

the resulting perturbed curve, Figs 4a and b, depends on the sign of e. Functions behaving

like f4 are then said to be unstable, while those with characteristics exhibited by A are

stable.

3.3 THE BIFURCATION SET

It can be shown mathematically that degenerate singularities lie on a bifurcation set (see,

for instance, Gilmore, 1981). The bifurcation set is the set of all points in a parameter

space where the Morse condition (see section 3.3) is not satisfied by the given curve.

Consequently, a curve lying on the bifurcation set is unstable.

Intuitively, it has been noted by several investigators in bladed disk research that the

double modes of tuned systems become "split" (or, bifurcate) into two close modes when

mistuning is admitted (Ewins, 1973; Srinivasan & Cutts, 1975). Since the degenerate

tuned modes are delicately perched on the bifurcation set, they are inherently unstable.
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The slightest amount of disordering that brakes the cyclic symmetry of the tuned system

leads to a bifurcation of the spectrum, and an unfolding of the singularities of the fre-

quency response curves. The bifurcation set occupies a very significant role in mistuning

research.

In order to obtain the bifurcation set for a system, we need to first define a system

behavior variable x, specify the number of control (mistuning) parameters such as ei, and

then set up a differentiable function V of all the parameters. V is sometimes known as the

potential function, so-called probably because it corresponds to the potential energy in

Zeeman's catastrophe machine. The bifurcation set is then obtained from the gradient of

the potential function, as shown below for a 2-parameter family of functions. Although

one can always identify a system behavior variable (or state variable) x, it is not always

easy to set up the potential function for the parameters, or to obtain an equation for the

bifurcation set.

For an illustration of the procedure for obtaining the equation of the bifurcation set, we

return to the second example given in the previous section. Writing a -=a4, and V -3_, we

can regard V as a potential function, with a state variable x, and control parameters

el, e2). Thus, re-writing (31) in a slightly different manner, we get

V = b4 - (x - a) 4 + el (x - a) 2 + E2(x - a) (32)

The control parameter el is known as the "splitting factor", while e2 is the "normal fac-

tor", (Saunders, 1980). In eq (31), el = e while e2 = 0.

The equilibrium manifold is obtained by setting the gradient of the potential function, to

zero.

M =V" = -4(x-a) 3 + 2el(x-a) + e2 = 0. (33)

When el > 0, then we split the manifold M, and discontinuities can occur in x. The singu-

larity set S is obtained following another partial differentiation:

S ---2el - 12(x - a) 2 = 0 (34)

The bifurcation set B is the complement of the singularity set. It is obtained by eliminat-

ing x from the equation for M and S. Solving eqs. (33) and (34) simultaneously, we get

el = 6x 2- 12ax + 6a 2 (35)
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E2 =--8X 3 + 24ax 2 -24a2x + 8a 3

From eq. (35), we obtain an expression forx

(36)

x = a+ e_ (37)

We accept only the positive root:

x=a+_

which, when substituted into (36) yields

e2=-8 a+ W +24a a+ x/-_- j

simplifying to

(38)

2-24a 2 a+ _ j +8a 3 (39)

2"_13

ez = - (40)
9

from which we obtain

8el 3 -27e22 = 0 (41)

which is the canonical form of the cusp catastrophe. If we plot V versus x for some

selected values of el and e2, we obtain the curves shown in Fig 5. Note that when the

values of el and e2 satisfy eq. (41) of the bifurcation set, then slight variations in the mis-

tuning parameters el and e2 will induce considerable changes in the topology of the

map V.

When we vary the mistuning parameters ei over an admissible range in the plane of

parameters, and plot the potential V as a function of the behavior variable x, we obtain the

illustration in Fig 6. The bifurcation set is demarcated in the figure, and it is seen to be in

the form of a cusp. Hence, systems whose characteristic function can be cast in the form

of eq. (32) will have a 'cusp catastrophe'.

It must be understood that although the cusp catastrophe is very common, it is not the

only one encountered in practice. Bifurcation sets of other shapes exist. The lowest seven

categories were obtained by Thom (1972), and these were given picturesque names such
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as fold, cusp, butterfly, swallow-tail, etc, and were collectively named as the seven ele-

mentary catastrophes by Thom. Subsequently, the taxonomy was extended by Arnol'd,

who then used the collective name of singularities, after noting some similarities between

the abutment diagrams and certain Coxeter-Dynkin groups in crystallography, and cer-

tain Lie groups. See Part II of Arnol'd et al (1985) for details.

4. STABILITY OF FREQUENCY RESPONSE CURVES

In order to investigate the stability of frequency response curves, we consider a simple

model of a ring with three equally spaced masses, Fig 7. The three masses in Fig 7a may

be considered to be situated at the apogees of an equilateral triangle superimposed on the

vibrating ring. If we open up the ring, then a uni-axial chain (simply supported beam)

results, Fig 7b.

After the equations of motion are derived, the structure of the resulting dynamical matrix

is a symmetric circulant. We concentrate on the symmetric case, which arises often in

structural dynamics on account of Maxwell's reciprocity laws, excepting cases where

factors like gyroscopic effects predominate, for the time being. The case of anti-

symmetric and skew symmetric circulants are not treated here in any detail, but will be

returned to in subsequent work.

4.1 GENERAL SOLUTION FOR 3 DOF SYSTEM

The static stiffness matrix of each of the two systems shown in Fig 7 is symmetric, the

tuned system matrix in either case is of the general form

[a c]A(°)= -b a b (42)
-c -b a

We shall analyze the stability of A (°) in the most general case. Therefore, we assume that

all the entries in A(°) are complex elements, i.e. a, b _ C.

Let us now apply the following perturbation matrix to eq (42)

E= 0 e2 (43)
0 0

Without loss of generality, we can assign real values to a and b such that they have physi-

cal meanings, in terms of static (and/or dynamic) stiffness. Thus, if we assume that three
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loads, each of unit mass, are attached to the ring, we can denote the coupling and ground-

ing stiffnesses respectively at each load by kc and k8. In that case, elements of the static

stiffmess matrix are simply those of A (°) (eq (42)), where a = 2kc + kg, b = kc.

For specific treatments, we can set c = 0 for the linear chain, so that A (°) becomes banded;

while setting c = b yields the cyclic chain, resulting in a circulant system matrix.

The dynamic stiffness matrix of the tuned system is D (°) = A(°) - (o2I:

2kc + kg-a, "2 -kc -c
D(°)(o_) = - kc 2kc + kg - coz - kc (44)

-c 2kc + ks

The dynamic stiffness form of the perturbed matrix, D (e) = AC°)+ E - 0921, is therefore of

the form

2kc + ks + el -092 - kc - c
D(e)(09) = - kc 2kc + ks + e2 - oJ2 - k_ (45)

-c -k_ 2kc + kg -o12

It is seen by inspection that the matrices in eqs (44 and 45) are 'close', by the definition

given earlier in section 2.2 in terms of norms, since l eil=O, and liE II=(3. Thus, if we start

from any mistuned condition, provided that l eil is small and ultimately made to vanish,

in the limit, the mistuned characteristics always approach those of the tuned system as we

gradually turn off the perturbation, i.e. when ei = 0. This is the case for both the banded

and circulant matrices alike. However, as shall be shown presently, if we start from the

tuned condition, and gradually turn on the perturbation there is no telling where we may

end up; it all depends on the type of mistuning, and more importantly, whether or not we

cross the bifurcation set as we increase lel.

The frequency response function due to the application of a unit load in a structure is

usually known as the receptance, if the response we are interested in is defined as:

xi (46)

where xi is the displacement at node i due to the application of a unit dynamic load/)(c0)

at node j. In the case when i and j are coincident, then a;i is termed the direct receptance

at node i.

For the 3 degree of freedom system under investigation, our interest is to compute the
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direct receptance expressions for all, (i = 1, • • •, 3). These are obtainable from the diago-

nal elements of the inverse of the dynamic stiffness matrix, eq (45).

In order to keep the subsequent algebraic analysis compact, we use a for diagonal ele-

ments, and b or c for the off-diagonals. To obtain the inverse of eq (45), we first obtain its

determinant:

A(to, e) = -to 6 + 3ao) 4 -(3a 2 -2b 2 --C2) 0)2 + a 3 -a(2b 2 + c2) -2b2c

+ el(co 4 -2ato 2 + a 2 -b E)

+ e2(co4 -2a092 + a 2 -c 2)

+ el eE(al 2 - a)

The receptance matrix of the generalized mistuned system is therefore given by

(47)

1 [094- 2a t°2 + a2 -b2 -e2(t°2-a)

[D(e) (09)]-1 - A(O_, e) x [ b(a + c- toE)b 2 + c(a - 032) + F,2c

b(a + c- 092)

0_4- 2aco2 + a2 --C2--EI(O) 2 -a)

b(a + c - 092) + elb

b 2 + c(a - co2) + e2c ]

b(a + c - 092) + elb JC04 --2aoY 2 + a 2 -b 2 + (el + _2)((02 -a)-ele2

(48)

From the diagonal elements, we obtain the following expressions for the direct recep-

tance at each of the three nodes:

C04-2aco 2 + a 2 _b 2 - e2(c02- a)
t_ll = A(c0,e)

(49)

co4 _2ato 2 + a 2 _¢2- EI(O_2-a) (50)
O_22 ---- A((.O, E)

tO4 -2a032 + a 2 -b 2 + (el + e2)(tz r2 -a)-ele2

0t33 = A(c0,e)
(51)

We can, in generalized form, determine the differences in the three receptance expres-

sions by using the first node as reference. We consider two mistuned cases in addition to

the tuned datum. These are the circulant and the banded.

CIRCULANT MATRIX

As may be verified from the equations below, the receptance expressions at all coordi-

nates are the same for the tuned circulant case, b =c and e, = 0; there being no preferred
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node for a perfect circle, since all locations are exactly the same. Thus,

• CASE0: el =0; E2=0.

al I -- 0t22 = 0

all - a33 = 0

(52)

(53)

• CASE 1: el = e; e2 = e.

all - 0_22 = 0 (54)

e(a- to2) + e 2
all -- a33 = (55)

A(¢o,e)

• CASE 2: e_ =

2e (a - to2)
Oql--t_22 =

_(to, e)
(56)

e(a-_) + e2
all - a33 = (57)

zx(to,e)

BANDED MATRIX

When b # c, the system is no longer circulant, but is nevertheless periodic in the axial

sense. Thus, the periodicity is now rectilinear, resulting in a banded matrix. The direct

receptance expressions at each of the nodes, relative to node 1, are therefore as follows:

• CASE 0: e_=0; e2=0.

al 1 -- a22 -- --
b 2 _C 2

A(_o,e)

Otl 1 -- Ot33 = 0

where eq. (59) holds on account of the physical symmetry of the system.

(58)

(59)

• CASE 1: el =

b 2 _C 2

A(O), £)
(60)
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e(a-°Jz) + e_ (61)
all -- 0t33 = A(O), E)

• CASE 2:

2e(a-o_)-b 2 + c2
(62)

zx(oJ,e)

e (a - o_) + e2 (63)
Oil I -- ¢_33 = A(CO, E)

For the rectilinearly periodic system the direct receptance expressions at nodes 1 and 3

are then equal when tuned conditions are imposed ei = 0, but at_ _ a22.

The receptance expressions in the preceding analyses are due to excitation at a single

point. In bladed disk research, simultaneous multi-coordinate excitation of the engine

order type is common. Thus, in an umbrella-mode type of excitation, all the nodes are

excited simultaneously, all the excitations being of equal intensity and in phase.

Applying equal, simultaneous in-phase excitation of unit magnitude to all the three coor-

dinates leads to the following receptance expressions at the different nodes. Here, only

one subscript is attached to each receptance, to denote the point of response determina-

tion.

o_4 - (2a + b + c)o_ + a 2 + (a + c)(b + c) + e2(a + c - ¢oz)

al = A(¢o, e) (64)

co4-2(a + b)o_ + a 2 + 2ba + 2cb-c 2 + ea(a + b-w a)
az = (65)

A(o_, e)

¢04-(2a+b+c)09 z + (a+c)(b+c) + e2(a +c -oY2) + el(a +b- ¢02)+ ere2

a2 = A(og,e) (66)

The difference between the direct receptance elements, relative to that at coordinate 1, is

expressed as follows:

(b-c )¢o'_- el (a +b-o_) + (a +c )( c-b ) + e2(a +c-¢o 2) + (c-b )a - cb + c 2

al - a2 = A(w, e)
(67)

el (a + b - o_) + el ez
at - a3 = - (68)

a(o_, e)
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It may be noted that in the foregoing only the diagonal elements were perturbed. How-

ever, the results to be derived in terms of structural stability are still applicable when c is

regarded as a perturbation parameter; so that as c _ 0, axial periodicity is being gradu-

ally turned on, while cyclic symmetry is induced in the neighborhood of c-" b.

4.2 NUMERICAL IMPLEMENTATION

We consider the case of the so-called 'strong coupling', using the following numerical

values: kc = 9.5, kg = 1, a = 20, b = -9.5, e3 = 0, e2 = -0.1, el = 0.1. Clearly, the ratio

of mistuning to coupling strength is very small. Now, in order to compute the frequency

response curves, we need some damping to obtain finite amplitudes at resonance. Assume

hysteretic damping of 0.01 for all cases. Without loss of generality, the response to be

computed is the direct receptance, i.e. the response of each node to individual excitation.

For the linear chain, the frequency response of the tuned and mistuned systems are shown

in Fig 8. Notice that at the tuned state, the amplitudes of nodes 1 and 3 are equal, on

account of symmetry, while that of node 2 is double that magnitude.

Because the system exhibits robust stability, all nodes have almost the same response

patterns and magnitudes as in the tuned system. This is also the case when we change the

sign of e2, from -0.1 to 0.1. The receptance of this system therefore behaves like a Morse

function, Fig 3.

When we repeat exactly the same procedure for the circulant ring, a very different pic-

ture is obtained. Fig 9 shows the response of individual nodes compared with the tuned

case. This case corresponds to a 2-parameter perturbation, with el = 0.1,

e2 = -0.1, e3 = 0.

Notice that the node with zero mistuning now has a reduction in amplitude of almost

50%. This extremely unequal amplitude distortion is the case no matter how small the

magnitude of the perturbation is, so long as we keep the form of mistuning.

If we now change the mistuning matrix in a very small way, by making e2 = 0.1, we

obtain the response curves in Fig 10. We now notice a substantial difference in the topol-

ogy of the curves in Fig 10, compared to those in Fig 9. Thus, a very small change in the

mistuning matrix (eq. 23), now results in a considerable difference in the vibration

response at the individual nodes. The question of which node will be most responding, or

the one having the least amplitude, is now not as easy as one would have expected. In Fig

9, it is node 2, while it is node 3 in Fig 10. In fact, the amplitude of node 3 has been
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increased by about 100% from Fig 9 to Fig 10, merely by changing only one entry in the

system matrix from 19.9 to 20.1, a change of less than 1% !

The foregoing examples, based on a simple 3 degrees of freedom model of a circular

membrane, illustrates the instability induced by cyclicity. It is clear that the qualitative

conclusions to be drawn from Fig 9 are in conflict with those from Fig 10, no matter how

small we make the mistuning. When bladed disk systems are well-modeled to include the

effects of blade coupling, blade or disk mistuning and cyclic#y, more serious distortions

can result.

5. STABILITY OF EIGENVECTORS

Frequency response curves are intimately related to eigenvectors, as a modal analysis

reveals, eq. (20). Therefore, if cyclicity induces instability in the frequency response

curves, as we have just seen, then it is to be expected that cyclicity will also lead to insta-

bility of eigenvectors. The subject of eigenvector instability is discussed in greater detail

in another monograph (Afolabi, 1989b). Yet, it is appropriate at to present a glimpse of

geometric instability arising from modal degeneracy in this place. We give one pair of

examples.

Consider the following tuned symmetric circulant, whose elements are complex

= + i(-5)
co L-95+i(-5)

-95 + i(-5) -95 + i(-5)"
200 + i(10) -95 + i(-5)
-95 + i(-5) 200 + i(10)

(69)

The eigensolution of co is easily computed (for instance, by the IMSL routine EVCCG),

from which we obtain the following eigenvalues

A0 = diag {10 + i(0), 295 + i(15), 295 + i(15)]
(70)

and eigenvectors

] + i(0) -0.892 + i(-0.009) --0.397 + i(-0.001)]
U0 = + i(0) ---0.108 + i(0.009) 1 + i(0) |

+ i(0) 1 + i(0) -0.603 + i(0.001) J

Note the degenerate roots (at the second and third modes).

(71)
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In order to investigate the stability of the tuned circulant, we apply two distinct but very

similar small perturbations to it, and compare their eigensolutions. The first of the two

perturbed matrices are

Cl= 201 + i(10) -95 + i(-5) -95 +/(-5)]-95 + i(-5) 201 + i(10) -95 + i(-5) J-95 + i(-5) -95 +/(-5) 200 + i(10)

The second mistuned matrix is

C2= 201 + i(10.5) -95 + i(-5) -95 + i(-5)]
-95 + i(-5) 202 + i(9.5) -95 + i(-5)/
-95 + i(-5) -95 + i(-5) 200 + i(10) J

It is clear that the two perturbed matrices are 'close' since liE II / IICo II=0, where

(72)

(73)

0 + i(-0.5) 0 + i(0) 0 + i(0) ]E = c t -c2 = 0 + i(0) -1 + i(0.5) 0 + frO) ] (74)0 + i(0) 0 + i(0) 0 + i(0)

and Co is defined in eq. (69). The computed eigenvalues of cl are:

f
A1

=diag 110.666 + i(0),

The eigenvalues of c2 are as follows:

295.334 + i(15), 296 + i(15)} (75)

A2  ia I10998 , 0  295477 , 1516 206525 , 1484 ]
Although the eigenvalues of eq (69) are degenerate, those of (72) and (73) are regular.

Moreover, as is evident from eqs (75) and (76), the eigenvalues of the two mistuned cir-

culants are close to each other, as they are to those of the original tuned system, Co.

Therefore, the tuned, symmetric circulant given in eq (69) is well-conditioned with

respect to eigenvalue extraction.

Notice, however, what happens to the eigenvectors of cl (eq. (72)), as a very small

change is made using E (eq. 74) to transform it into c2 to get eq. (73). We first compute

the eigenvectors of c l, followed by those of c2. The eigenvectors of c I are

U 1 --

"0.997 + i(0) -0.502 + i(0) -1 + i(0)]
0.997 + i(0) -0.502 + i(0) 1 + i(0) /

1 + i(0) 1 + i(0) -0 + i(0)J

(77)

while those ofc 2 are
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[0.996 + i(-0.002) -0.780 + i(0.201) -0.664 + i(-0.191)"
U2 = | 0.993 + i(0.002) -0.225 + i(-0.203) 1 + i(0) (78)

I_ 1 + i(0) 1 + i(0) -0.331 + i(0.187)

Notice how a small change in the matrix c l induces a significant qualitative difference,

especially between the previously degenerate modes 2 and 3 of Co and the corresponding

eigenvectors of c 1 and c 2.

If we now repeat the procedure using the banded matrix formation, rather than the circu-

lant, no double modes appear. Moreover, the eigenvectors are just as well-conditioned as

are the eigenvalues. The first mistuned matrix is:

201 + i(10) -95 + i(-5) 0+ i(0) ]B1 = -95 + i(-5) 201 + i(10) -95 + i(-5)|
0 + i(0) -95 + i(-5) 200 + i(10) J

while the second matrix is given by:

(79)

[ 201 + i(10.5) -95 + i(-5) 0 + i(0) ]
B2 = | -95 + i(-5) 202 + i(9.5) -95 + i(-5)1 (80)

[ 0 + i(0) -95 + i(-5) 200 + i(10) J

It is clear that the two perturbed matrices are 'close', as in the case of the circulant.

The eigenvalues of B i are:

Al=diag [66.399+i(2.93), 200.5+i(10), 335.102+i(17.07)} (81)

while those of B2 are:

A2=diag{66.898+i(2.81), 200.500+i(10.25), 335.603+i(16.94)] (82)

Note that the eigenvalues of the two mistuned tridiagonal systems are close to each other,

as were those of the circulant.

We first compute the eigenvectors of B 1:

"0.706 + i(0)
U l = 1 + i(0)

1 + i(0)

followed by those of B2;

U2 =
0.708 + i(-0.003)

1 + i(0)
0.714 + i(-0.001)

1 + i(0) -0.708 + i(0)]
-0.005 + i(0) 1 + i(0) |

1 + i(0) --0.703 + i(0)J

1 + i(0)
0.005 + i(0.002)

-1 + i(0)

(83)

-0.706 + i(-0.003) ]

1 + i(0) J (84)-0.701 + i(-.001)
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Also, the eigenvectors are very stable, unlike in the circulant system.

In closing, we examine the eigenvalues of a quasi-mistuned system (alternating mistun-

ing) having 6 degrees of freedom. The symmetric circulant matrix and its eigensolutions

are given below.

The system matrix is given by:

P0 =

200 + i(10) -95 + i(-5) 0 + i(0)
-95 +/(-5) 210 + i(11) -95 + i(-5)

0 + i(0) -95 + i(-5) 200 + i(10)
0 + i(0) 0 + i(0) -95 + i(-5)
0 + i(0) 0 + i(0) 0 + i(0)

-95 + i(-5) 0 + i(0) 0 + i(0)

0 + i (0) 0 + i (0) -95 + i(-5)
0 + i(0) 0 + i(0) 0 + i (0)

-95 + i (-5) 0 + i(0) 0 + i (0)
210 + i(11) -95 + i(-5) 0 + i(0)
-95 + i(-5) 200 + i(10) -95 + i(-5)

0 + i(0) -95 + i(-5) 210 + i(11)

(85)

while the eigenvalues are

Ao = diag [ 14.934 + i(0.49) 109.869 + i(5.48) 109.869 + i(5.48)

t

300.131 + i(15.52) 300.131 + i(15.52) 395.066 + i(20.51)

with corresponding eigenvectors

U 0 =

1 + i(0)
0.974 + i(0.00)

1 + i(0)
0.974 + i(0.00)

1 + i(0)
0.974 + i(0.00)

1 + i(0)
0.474 + i(0.00)
--0.500+ i(0.0o)
-0.949 + i(0.00)
-0.500 + i (0.00)
0.474 + i(0.00)

-0.091 + i(0.01)
-0.949 + i(0.00)

-0.909 + i(-0.01)
0.086 + i(--0.01)

1 + i(0)
0.863 + i(0.01)

-0.199 + i(-0.03) 0.949 + i(0.00) -0.974 + i(0.00)
-0.791 + i(0.03) -0.500 + i(0.00) 1 + i(0)
0.949 + i(0.00) -0.474 + i(0.00) -0.974 + i(0.00)

-0.209 + i (-0.03) 1 + i (0) 1 + i (0)
-0.750 + i(0.03) -0.474 + i(0.00) -0.974 + i(0.00)

1 + i(0) -0.500 + i(0.00) 1 + i(0)

(86)

(87)

It may be noted that most of the eigenvalues occur in doublets, as in the perfectly tuned

state.
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6. CONCLUSIONS

• A distinction exists between the elastic stability and geometric stability of a system.

The former can be predicted from the real part of the system eigenvalues, while the

latter are obtainable from the direction of eigenvectors as small perturbations of the

system parameters are gradually turned on or off.

• The system matrix of a tuned circular disk or membrane is circulant. For a tuned bladed

disk, at least one of the sub-matrices is circulant. The reduction of such matrices to

Jordan canonical form is unstable under smaU parameter perturbation, as proved by

Arnol'd (1968).

• Consequent upon this instability is the "erratic" behavior of the frequency response

curve, which exhibits sensitive dependence on parameter perturbation, or mistuning.

• If the form of mistuning (not just the magnitude of mistuning) moves the system matrix

away from the bifurcation set, then geometric stability is enhanced.

• However, even the slightest parameter variation from the delicately balanced cyclo-

symmetric form will destabilize the eigenvectors, if the map goes across a bifurcation

set. Consequently, in such cases, the topology of the frequency response curves will

exhibit significant instability under a very small perturbation.
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Fig 5. Topological trajectories of V for various values of the
mistuning parameters; these figures refer to eq. (32), setting b4 = 0, a4 = 1.5
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that within the bifurcation set, there are two resonance peaks; outside, only one peak;
for the tuned system, the two peaks coalesce into a degenerate singularity.
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Fig 7. Models of (a) the cyclic membrane, (b) the linear chain
with three degrees of freedom.
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